

Production and Socio-economic Issues related to Organic Aquaculture

Juveniles - Production systems – Nutrition - Welfare - Environment – Consumers – Economics - Institutional Frameworks

> Alfred Jokumsen, DTU Aqua Wout Abbink, Imares Pirjo Honkanen, Nofima

Sourcing of Juveniles

Complete Organic Life Cycle from 1. January 2016

Sourcing of juveniles

Max. non-organic juveniles:

- 80 % by 31.12.2011
- 50 % by 31.12.2013*
- 0 % by 31.12.2015

*Postponed to 01.01.2015 for units approved under national organic rules before 01.01.2009

Challenges of Sourcing of Organic Juveniles

- 1. Inadequate supply of organic juveniles (+ organic trout ova, DK)
- 2. Lack of specific rules for organic hatcheries (FW & SW) to distinguish organic and non-organic hatcheries, e.g.
 - Breeding (Tools/objectives, selection, robustness etc.)
 - Stocking densities
 - Management
 - Phytoplankton and zooplankton production
 - Essential nutrients
 - "Organic" weaning diets etc. (Hatching—)

weaning of juveniles)

Feed and Nutrition - Carnivorous aquaculture

Sourcing priority of feed ingredients:

- 1. Organic feed products of aquaculture origin
- 2.FM & FO from org. aquaculture trimmings
- 3.FM & FO derived from trimmings of fish caught in sust. fisheries
- 4. Org. feed mat. of plant origin (max. 60 %)

Feed and Nutrition

Organic feeding regimes priority:

- Animal Health
- •High product quality/human health
- •Low environmental impact

Feed and Nutrition

Sourcing priority of feed ingredients:

- 1.Organic feed products of aquaculture origin
- 2.FM & FO from org. aquaculture trimmings
 - Prohibited to feed fish with ingredients derived from the same species
 - **➤** Limited organic production → Limited trimmings
 - ➢ Below the critical level needed for sustainable manufacturing processes
- 3.FM & FO derived from trimmings of fish caught in sust. fisheries

Feed and Nutrition

Fish Meal & Fish Oil derived from trimmings of fish Considerations:

- Optimum nutrient balanced diet (Amino acids (AA) –
 Fatty acids (FA)) is crucial for optimum performance
- •Fish meal and Fish oil well balanced nutrient source
- •FM from trimmings is lower in protein/essential AA
- Supplementation with AA is prohibited
- •FM from trimmings is higher in Phosphorus (P)
 - Decreased performance (growth, health, quality)!
 - → Increased environmental impact!

Feed and Nutrition – Alternative options

FM & FO are limited resources

- FM from whole fish caught in sustainable fisheries may be prioritized
- FM & FO from trimmings for limited use
- Alternative sources of proteins and lipids urgently needed to optimize dietary AA-profile (micro-/macro organisms high in essential AA and FA, plants, PAP etc.)
- Supplementation with essential AA and FA and other essential nutrients derived from processes in line with organic principles

Feed and Nutrition – Omnivorous/Polyculture/»Extensive» Aquaculture

- Carps, shrimps, tilapia: Natural feed/add. comp. feed
- Molluscs: Extract nutrients from natural local feed web/ organic fish production/water quality issues
- Sea weed: Extract nutrients from the environmental water body/organic fish production

Health – Veterinary treatments

Order of preference:

- 1.Substances from plants, animals or minerals in a homoeopathic dilution (stimulate self-cure)
- 2.Plants and their extracts not having anaesthetic effects

3. Trace elements, metals, natural immunostimulants or

authorised probiotics

4. Allopathic treatments

Health – Veterinary treatments

Allopathic treatments:

- Max. 2 treatments/year life cycle > 1 year
- Max. 1 treatment life cycle < 1 year

Anaesthesia prior to vaccination – counts for treatment?

Parasite treatments

- Max. 2 treatments/year
- Max. 1 treatment life cycle < 1,5 year

Prolonged withdrawel period for all treatments

Health – Cleaning and disinfection

Parasite treatments:

- Only Limestone and Dolomite permitted but without antiparasitic effect
 - Need of effective sanitizers for proper management of disease risks in organic open systems, welfare and environmental protection

Substances for consideration in line with organic principles, e.g.:

- Hydrogen peroxide
- Sodium percarbonate
- Peracetic acid and peroctanoic acid
- Calcium hydroxide

Aeration/Oxygenation

- Only mechanical aerators
- Prefer renewable energy sources
- Pure oxygen

 only permitted
 in critical situations

Stocking density

Salmonids in freshwater (FW):

- Salmon, arctic charr: Max. 20 kg/m³
- Sea- and rainbow trout: Max. 25 kg/m³

Salmonids in seawater (SW):

• Salmon, sea- and rainbow trout: Max. 10 kg/m³

Cod, bass, bream, turbot (SW):

- Turbot: Max. 25 kg/m²
- Others: Max. 15 kg/m³

Carp family and associated Species in polyculture (perch, pike, catfish, coregonids):

Max. 1.500 kg/ha/y

Consider: Holistic approach

Welfare

Interactions:

- Feed quality
- Stocking density
- Water quality
- Rearing conditions
- Daylength Geography
- Physical injuries
- Transportation

Consider: Holistic approach

Closed Recirculation Aquaculture Systems (RAS) NOT permitted – excl. hatcheries & juveniles

RAS: Advantages and Disadvantages. Intensive & energy issues Consider: Reuse of water – save water resources – renewable energy in line with organic principles.

Environmental interactions

Marketing & Sale

- Production vol.
- Distance

Consumer Perceptions of Organic Seafood and the production systems

- 1. Positive to aquaculture Positive to organic aquaculture

 If Negative Remain Negative
- 2. *Positive* about organic production → Also *willing to pay* for organic
 - Link stronger at high *Education*, high *Income*, high *Knowledge* about organic and have young *Children*
- 3. High Knowledge about organic → rational to organic prod.

 Low Knowledge about organic → Emotional to organic
- 4. Health benefits of organic fish, Naturalness of Local/
 Domestic production and Food Safety

Consumer Perceptions of Organic Seafood and the production systems

- 5. Only a small segment concerned about *welfare* regimes among consumers in general
 - Priority to Quality, Freshness, Taste
- 6. Realising aquaculture *protecting wild stocks* perceive aquaculture *protecting the environment*
- 7. Missing common understanding of organic aquaculture; i.e. Missing distinction between labels: Organic, Ecological, Green, Sustainable, Fair Trade Transparency Tangibility

Consumer Perceptions of Organic Seafood – A Survey

Low familiarity with labels – in particular the EU leaf

More familiar with national labels

Consumer Perceptions of Organic Seafood – A Survey

High priority:

- 1.No use of toxic chemicals
- **2.Natural** living conditions
- 3. Water quality
- 4.No medicines

Consumer Perceptions of Organic Seafood – A Survey

Lower priority:

- 1.Environment
- 2.Welfare
- 3.Organic feed
- 4.Sea cage or pond farming
- 5.Min. water use
- 6.Feed utilization
- 7.Escapees

Lesson:

Consumers'
perception of organic
seafod seems not in
line with the EU
regulation definition
of organic seafood

Consumer Perceptions of Organic Seafood – Knowledge gaps

- 1. Tangible information about specific production systems and feed balancing food choices between moral and physical attributes of organic fish
- TRANSPARENCY: Information transfer and product labelling
 Organic aquaculture make a difference in the European and global markets

Transparent Information Strategy on Organic Seafood Production

Economics - and Competitive Position of Organic Aquaculture Products in EU

Preliminary main findings of Organic versus Conventional production

1. Higher Production Costs

➤ Salmon: 20 – 30 %

➤ Trout: 25 – 40 %

Sea bass/Sea bream: 20 – 30 %

> Carp: 10 − 20 %

2. Higher estimated selling price

> 15 − 30 %

Economics - and Competitive Position of Organic Aquaculture Products in EU

- II. Main reasons for higher production costs of Organic production
- 1.Lower production intensity **⇒**igher costs/kg prod.
- 2.Feed price 25 30 % higher
- 3. Higher price of organicly raised fingerlings/juveniles
- 4.Rel. more labour hours and skills special care/quality/risks

Institutional Frameworks – Constraints to the Growth of Organic Aquaculture

- I. Preliminary identified main constraints of the organic aquaculture regime in Europe:
- **Complex and fragmented →Challenging the whole chain**
- > Bureaucratic production rules and control provisions
- ➤ Complexity of bureaucracy hamper the transition to organic certified production
- > Lack of national policy support for achieving a critical mass of organic aquaculture production
- > Lack of relevant statistics and updated information on organic aquaculture
- ► Great variation between the countries with respect to standards and certifications hampers export to international markets

Institutional Frameworks – Constraints to the Growth of Organic Aquaculture

- > Cost of certification and requested control programs are relatively higher for small-scale aquaculture producers
- ➤ Lack of knowledge/confusion among consumers about organic/conventional and other labels
- Organic aquaculture production may be challenged by stricter regulation for conventional production, which may wipe out some of the differences between organic and non-organic production

Reflections (I)

- Basically organic production aims natural processes and sustaining the cycle in Nature
- Extensive production in line with organic principles cf. omnivorous fish, seaweed, molluscs – minor/no input of feed/polyculture
- Contradicting to production of carnivorous fish, i.e. salmonids, bass, bream
 - Pressure on FM & FO
 - Trimmings (P, environment, energy)
 - Transport of ingredients (Carbon-footprint)

Reflections (II)

- Flow through systems for on-growing (No RAS)
 - Risc of infections limited treatment options
 - Interaction with predators
 - Escapees
- Max. stocking densities: "Extensive"
 - Question mark economical sustainability
- Establishment of robust brood stocks; i.e. stress resilient, disease resistant, ethical welfare
- Critical mass of organic aquaculture production (Ova, juveniles, feed)
- Need of organic aquaculture statistics (database)

Reflections (III)

- Small producers face market barriers
 - Relatively high costs of control and certification
- Exclude the organic spirit of development rural areas, improve employment and social structures
- Europe has big potential for organic aquaculture products
 - However great imports at competeting prices, high carbon-footprint and contradicting organic principles/Institutional frameworks

